Aiming Surgical Lasers With an Active Cannula

D. C. Rucker, J. M. Croom, and R. J. Webster III, Vanderbilt University, Nashville, TN, USA

An active cannula is a surgical device capable of dynamically changing its curved shape in response to rotation and translation of the several precurved, concentric, superelastic (Nitinol) tubes from which it is made [1] (Figure 1). As the tubes move with respect to one another in response to input motion at their bases (outside the patient), they elastically interact, causing one another to bend. This bending can be harnessed to direct the cannula through winding trajectories within the human body. An active cannula robot has the potential to perform a wide range of surgical tasks, and it is especially well suited for guiding and aiming an optical fiber (e.g. BeamPath from OmniGuide, Inc.) for laser ablation as depicted in the figure to the right. Controlling the trajectory of the laser requires control of the shape of the active cannula, and in particular the position of its tip. Prior work has shown that beam mechanics can be used to describe the shape of the cannula given the translations and axial angles of each tube [1]. Here, in order to aim the laser, we invert this relationship (“inverse kinematics”), solving for the translations and axial angles of each tube, given a desired position of the cannula tip.

Our experimental prototype cannula (Figure 1) consists of three tubes. The outermost tube is straight and rigid (stainless steel). The middle tube is flexible (Nitinol) and precurved into a circular arc, the shape to which it returns as it is extended. The innermost tube is straight and flexible – we use it to represent the straight trajectory of the laser to the tissue surface. We performed an experiment (Figure 2) to assess the validity of the inverse kinematic model and the accuracy of our prototype. The location of the tip was measured with an Sx60 Optical Tracker (Claron Technology, Inc.). The green squares show the actual tip locations achieved, representing the path of the laser beam on the tissue surface. Mean tip error was 3.1mm (max 5.5mm). This experiment demonstrates the usefulness of the model, which can assist in the design of custom cannulas for guiding lasers in specific surgical procedures.


http://research.vuse.vanderbilt.edu/MEDLab/
A needle-scale, tentacle-like, continuum robot

Uses superelastic precurved concentric tubes to "steer" in free space or embedded in tissue.

Remote Actuation

Funding

NSF CBET # 0651803, NIH #1R44CA134169-01A1, and Vanderbilt University

Experimental Validation: Compliant vs. Rigid Components

Experimental Results

Central channel useful for:
- Biopsy collection
- Drug delivery
- Guiding fiber optics for imaging or ablation
- Actuating a gripper at the tip
- Delivering any other diagnostic or therapeutic agent a needle can deliver

Problem:
- What base rotations and translations are necessary to achieve a desired tip position?

Solution:
- Accurately model the active cannula and simulate its behavior.

Experimental Validation:
- Compute via points along a desired tip trajectory and implement them on a prototype active cannula.

Experimental Results

Central channel useful for:
- Biopsy collection
- Drug delivery

Central channel useful for:
- Biopsy collection
- Drug delivery

References


The Active Cannula