A “Hands-On” Approach to Teaching System Dynamics
Jenna L. Gorlewicz, Louis B. Kratchman, and Robert J. Webster III
Medical & Electromechanical Design Laboratory, Vanderbilt University, Nashville, TN, USA

Course Description
- **System Dynamics** - Core Junior Level Mechanical Engineering Course where students learn to model dynamic systems in several domains.

![System Dynamics Diagram]

\[\ddot{x} + \frac{b}{m} \dot{x} + \frac{k}{m} x = f(t) \]

Teaching Challenges
- Concepts are difficult to grasp when they lack interaction with a real physical system.
- Limited lab time and resources make thorough illustration challenging because each concept is best demonstrated by a different physical system.

Approach: The Haptic Paddle
- The haptic paddle [1] is an inexpensive force-feedback robot that students analyze, calibrate, program, and physically interact with in a series of lab assignments.
- Enables students to analyze a real dynamic system while also interacting with several virtual systems.

Hardware and Software
HARDWARE:
- Acrylic Components ($15)
- Arduino Microcontroller + Ardumoto Shield ($55)
- DC Motor (~$5)
- MagnetoResistive Angle Sensor ($6)

SOFTWARE:
- MATLAB SIMULINK
- ARDUINO

![Haptic Paddle Diagram]

Laboratories
- **Lab 1:**
 - Build models to simulate stiffness, damping, and a DC motor.
 - Conduct a motor spin down test.

- **Lab 2:**
 - Measure the inertia of the paddle handle.
 - Determine the torque constant and Coulomb friction in the motor.

- **Lab 3:**
 - Calibrate the angle sensor.
 - Model the paddle as a second order system and compare theoretical and experimental observations.

- **Lab 4:**
 - Investigate Feedback Control.

- **Lab 5:**
 - Explore Modes of Vibration.
 - Interact with Virtual Systems.

Assessment Results
- 25 question multiple choice quiz (5 questions per lab)
 - Administered at the beginning of the semester
- 5 question lab quiz administered to a specific student section at one of the times below:
 - Beginning of Lab
 - After a Pre-Lab Lecture
 - After Lab
 - After completing the Lab Report

ANALYSIS: Wilcoxon Signed-Rank Test

<table>
<thead>
<tr>
<th>Lab</th>
<th>n</th>
<th>Pre-Test Score</th>
<th>After Lab Score</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18</td>
<td>2.39</td>
<td>2.72</td>
<td>0.3817</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>1.94</td>
<td>4.64</td>
<td>0.0022</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>2.20</td>
<td>4.00</td>
<td>0.0049</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>3.00</td>
<td>4.07</td>
<td>0.0352</td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>2.89</td>
<td>4.06</td>
<td>0.0264</td>
</tr>
</tbody>
</table>

Pre–Test and After Lab scores (out of 5) from 2008 (top) and 2010 (bottom). Red denotes significance at \(\alpha=0.05 \); Green denotes significance at \(\alpha=0.1 \).

- Analyses of each portion of the learning experience is underway to assess when students are learning the most.

Dissemination
- Collaborating with a local physics teacher to use the paddle in a high school physics lab.
- Used in several K-12 outreach demonstrations.
- All lab materials and instructions are available online:
 http://research.vuse.vanderbilt.edu/MEDLab/haptic_paddle.html

References

Funding
- National Science Foundation Graduate Research Fellowship
- MathWorks Curriculum Grant